Transforms each column of data matrix X to normality using the inverse Rosenblatt transform. Tolerant to missing values (NA entries).
gaussianize(X, jitter = FALSE)gaussianized data matrix, Xn
Emile-Geay, J., and M. Tingley (2016), Inferring climate variability from nonlinear proxies: application to palaeo-enso studies, Climate of the Past, 12 (1), 31–50, doi:10.5194/cp-12-31-2016.
Van Albada, S.J., Robinson P.A. (2006), Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability. J Neurosci Meth, doi:10.1016/j.jneumeth.2006.11.004
Other utility:
askUser(),
concatEnsembleTimeseries(),
convertAD2BP(),
convertBP2AD(),
createChronMeasInputDf(),
generateEnsembleFromUncertainty(),
getLastVarString(),
getOs(),
heuristicUnits(),
loadRemote(),
pullInstance(),
simulateAutoCorrelatedUncertainty(),
stringifyVariables(),
surrogateDataFun()